# Decimals: Converting Fractions to Decimals

—— Note: The Information above this point will not be sent to your printer ——–

 Write the fractions/ mixed numbers below as decimals 6⁄10 = .6 3⁄5 = .6 4⁄5 = .8 1⁄5 = .2 1⁄2 = .5 8⁄20 = .4 7⁄20 = .35 15⁄20 = .75 7⁄25 = .28 12⁄25 = .48 17⁄20= .85 49⁄50= .98 1 9⁄10= 1.9 1 1⁄25 = 1.04 9⁄50 = .18 6 15⁄25 = 6.6 3 13⁄20 = 3.65 18 17⁄50 = 18.34

—— Note: The Information below this point will not be sent to your printer ——–

## Related Resources

The various resources listed below are aligned to the same standard, (7NS02) taken from the CCSM (Common Core Standards For Mathematics) as the Decimals Worksheet shown above.

Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers.

• Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as (-1)(-1) = 1 and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
• Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then -(p/q) = (-p)/q = p/(-q). Interpret quotients of rational numbers by describing real-world contexts.
• Apply properties of operations as strategies to multiply and divide rational numbers.
• Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.

### Worksheet

Similar to the above listing, the resources below are aligned to related standards in the Common Core For Mathematics that together support the following learning outcome:

Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers